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LETTER TO THE EDITOR 

Identical particles and permutation group 
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Abstract. Second quantization is studied. Creation and annihilation operators are shown to be 
related on the same basis to both the algebra h(1) and to the superalgebra osp(ll2) which are 
shown to be compatible with both Bose and Fermi stltstics. The two algebras are completely 
equivalent in the owmode secfor but. hecause of the. g d i n g  of osp(l{2), differ io Lhe m y -  
particle case. The possibility of an unorthodox quantum field theory is suggested. 

Claiming that a permutation of two particles has been performed requires that the particles 
themselves can be distinguished. An idealized operational procedure to this effect would 
be as follows. One first attaches a label to each particle (i.e. a quantum number identifying 
its state) in order to distinguish it from any other, then one interchanges the particles and, 
finally, one looks once more at the labels to make sure that the exchange has been properly 
performed. However, one of the fundamental hypotbeses of quantum field theory is that 
particles should be treated as identical and indistinguishable; for this reason the permutation 
group is not truly related ab initio to second quantization but is introduced into the theory 
only at a second stage when the n-particle states are described in ternis of first quantization 
observables. 

This has the consequence that the usual connection between the algebraic properties 
of second quantization operators and the statistics of the particles tums out to possess 
some arbitrariness. In order to prove this statement, we shall build explicitly, in terms 
of anticommuting creation and annihilation operators, a new scheme where, by imposing 
the symmetry or antisymmelry of the particle states, both bosons and fermions can be 
simultaneously constructed. As briefly discussed at the end of this letter, the construction 
presented should be considered as an example of a much more general and far-reaching 
feature: since there is no necessary connection between the observables over the Fock 
space and the particle statistics, we are allowed not only to relate both fermions and bosons 
to the Weyl-Heisenberg algebra h ( l ) ,  but the scheme is also extendable to more complex 
relations among observables (e.g. quantum algebras) and/or exotic statistics (e.g. anyons). 
All these structures are, indeed, compatible. The one exception is the standard structure for 
fermions (provided by the superalgebra h(ll1)) which is consistent with fermions only. It 
should be mentioned that the approach presented in this letter was inspired by the property 
that the algebraic structures relevant to second quantization physics are Hopf algebras [l]: 
this is just the coproduct (i.e. the multimode description), trivial for t i e  algebras and 
brought to our attention as a result of studies of quantum algebras, which is the basis for 
our construction and dramatically discriminates between the different descriptions. 
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More formally, let us begin by showing how the creation and annihilation operators can 
be related, on the same basis to both the algebra h(1) and to the superalgebra osp(ll2): 
h(1) is customarily defined [21 to be generated by the four operators (U.  ut, 1, N ) ,  with 
commutation relations 

[a, at1 = 1 [ N ,  a ]  = -a [ N ,  a t ]  =at [l, 01 = 0. (1) 
Upon characterizing the unitary representations (i.e. those for which N t  = N ,  (at)t = a)  
with the spectrum of N bounded below by their lowest eigenvalue no, one can write 

(i-+ no + 1 )  
~~ 

atlk +no) = 

alk +no) = Ji;lk + no - 1) 
N l k  +no) = (k  + no)lk +no) k E PI. 

The usual Fock space F is obtained for no = 0, usually adopting the relation N 3 uta 
(which is just one of the solutions of the equations [ N ,  a] = -a, [ N ,  ai]  = at): 

din) = 2/;;7-i in + i~j= 

A related &-graded structure will be considered here, starting from the set of three operators 
S = (a, at, H) with H even and a and at odd. S is characterized uniquely by the relations 

[a. a') = 2H [H, a]  = -a ' [H, at1 = at (3) 

(i.e. N as in ( 1 )  and H is not assumed to be a function of a and at) and is a subset, not a 
sub-algebra, of the &-graded algebra osp(ll2) [3].  In fact completion of S to the whole 
of osp(ll2) requires the introduction of an additional set SI ( J - ,  J+) in the even sector, 
such that 

[at ,  a t ]  = 7.5' ( U ,  a )  = ~ 2 J - .  (4) 
Equations (3) and (4) imply the algebra closure: 

[J+ ,a I ,=~-a t  [J- ,u ']=Za [ J + , a t ] = O = [ J - , a ]  

[J', J - ]  = -4H [ H ,  J*] =&U*. (5) 

The bosonic sector B (.I-, J + ,  iff) is isomorphic to su(1 , l )  in the direct sum of the 
representations K = a and 2 [4]. 

An explicit analysis shows that the set S with relations (3) is sufficient to give rise to 
unitary representations of osp(ll2) that have the spectrum of H bounded below, and can 
be characterized by the lowest non-negative eigenvalue of H, say ho. Explicitly, 

a t l h o + 2 k + 1 ) = ~ I h o + 2 k + 2 )  ~ ~ 

atlho + 2k) = d m - l h o  + 2k + 1 )  

alho + 2k+ 1 )  = d m  I& +2k)  ~ 

alho +2k)  = &Iho +2k - 1) 

Hlho + k )  = (ho + k)lho + k)  

(6) 
~~ 

k E PI 
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where the partition of states in two classes exhibits the existence of supersymmetric doublets. 
The main point of ow derivation is the fact that eqnations (6), with ho = +, read 

Hlh)=hlh) h € N + $  
that is they coincide with equations (2) provided that the identification h = n + is 
implemented. This means that the closed subset S of osp(ll2) defined by (3) and, by 
induction, the whole of osp(ll2) shares the representation (2) with the Weyl-Heisenberg 
algebra h(1). Thus, the Fock space F provides a faithful representation for both h(1) (for 
no = 0) and osp(l12) (for ha = 4). 

Second quantization is based essentially on the relations (2). We suggest that the 
creation and annihilation operators may, therefore, be interpreted as belonging either td 
osp(ll2) or to h(1). The key point in our argument is that if one considers the algebra as' 
being generated by the defining commutation relations only, any physical interpretation is 
contained in equations (2) and it turns out to be, essentially, irrelevant whether one selects 
~ ~ ~ ( 1 1 2 )  or h(1). However, when one deals with many-particle states, the two schemes 
lead to self-consistent yet mutually unequivalent descriptions. The reason why this may 
happen is that h(1) and osp(ll2) are Hopf algebras (more precisely, osp(ll2) is a super 
Hopf algebra). Any Hopf algebra, say d, has, among its defining operations, the coproduct 
A : A + A 8 A (in fact, in the representation considered here this is necessary in that it 
implies that the action of the algebra is well defined on F8 7 and, by induction, on Pn). 
For both h(1) and osp(ll2) A is, of course, primitive. 

In h ( l )  one has 

1 1 
A(at) = - (U' 0 1 + 1 8 ut)  = - ( U /  + U ! )  

4 4 
A ( N )  = N 0  1 +  1 8 N  E NI + N z  A(1) = 1 8  1. 

The coalgebra for the superalgebra osp(l12) looks quite similar: 
A(a) = a  8 1+ 1 8 a  =ai  +a* 

A(at) =at @ 1+ 1 8 u t  +af (9) 

A(H) = H 81+10H HI +Hz. 
However, since a and ut are odd, whereas H is even, we have for c ,d ,e ,  f E osp(ll2). 
the multiplication law on 7 8 3. 

(10) 
where p ( d )  and p(e )  E ZQ are the degrees (i.e. parities) of d and e respectively. On Pn 
the composition rules are, therefore, quite different. Let us denote 

(c 8 d)(e  8 f) = (-)p(d)p(e)ce 0 d f  

uj E 1 0  18.. . 0 1 @ U  0 1@. . . 0 1 

ajt 1 8  10. .. 0 1 @ U +  8 1 8 . .  .8 1 
HI EE 1 8 1 0 . .  .0 1 8  H 8 1 8 . .  . 0 1 

Nj = 18 10.. . 0 18 N 8 1 8 . .  . 8 1 
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where the multiple @-products have n factors in which the only element different from the 
identity 1 is in the jth position. One has for (U, ut,  N ,  1) in h(1) the customary relations 
[ui. ujl = 0, [ai, U;] = 6 i j l  and [ N i ,  uj] = -uiSj j  (plus their Hermitian conjugates), while 
for (a,  at, H) in osp(ll2). the (graded) commutation relations are 

{ai, U j t ]  = 2HiSij [ H i , U j l  = I [ H ; , U j t ]  =u;tsi j  

{ui’ ,uj t )= S . .J+ 11 i { U i , U j )  =&j.(- 

and, of course, [uj, uj] = 0. 

ujtlnl, .. . .n , - l ,nj , .  . . ,nn)  = ( - 1 ) ’ j m l n , ,  .. . , nj-l,nj + i ,  .. . , n,) 

ujlnl, . . . , nj-1, n j . .  . . , n,) = ( - l )s j&[nl , .  . . ,ni- l ,nj  - 1 , .  . . , n.) 

On the Fock basis of p”, adoption of osp(ll2) leads to 

( 1 1 )  

Njlnl, .. . , n j - l , n j , .  . . ,nJ = nj ln l , .  ~~ . . , + I ,  nj ,  . . . , n.) 

where the phases are exactly those customarily used for fermions [5] (sj 
It is worth noting that equations (1 1 )  differ from the usual (bosonic) equations only in 

the choice of phases and, on p ,  imply [ai, uit] = 1;  this is consistent with the standard 
formulation, which in tnm gives (ai, ait] = 2H;(= 2Ni + 1). Nevertheless, the subtle and 
important implication here is that in order to determine the phases of the basis vectors an 
order must be imposed a priori on  the^ set of indices j such that 

nk), 

contrary to the standard bosonic theory where the creation operators commute and can be 
applied in any order. Of course, the usual properties of the Fock space, such as completeness: 

and the projection.operators on the one and two-particles states 

where 

11;) 

12;) 

11;. l j )  

do not depend on such phases and persist. osp(ll2) can be utilized in such a way to 
consmct n-particle states, leading to a scheme that is non-equivalent to that derivable from 
h(1) because of the grading of odd operators. 

This possibility of using anticommuting operators without reshiction on the occupation 
numbers nj also casts a new light on the question of how one should approach the 
introduction of statistics. 

In1 = O , n l =  0,. . . , ni-1 = 0, ni = l ,ni+l =‘o, . . . ,n .  = 0) 

In] = 0, n2 = 0,. . . , ni-1 = 0, hi = 2, n;+l = 0,. . . ,n ,  = 0) 

In1 = 0,nz =0, ..., ni = 1, ..., nj = 1 ,  ... n. = 0 )  
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As stressed in the introduction, second quantizationis essentially unrelated to statistics 
t61, which is required as a necessary set of rules to represent isomorphically n-particle 
states in the state-space given by the n-fold tensorization of the singleparticle Hilbert space 
proper of first quantization. The relevant point in the analysis of this problem, performed by 
Pauli in [61, is that the symmetry with respect to the permutation of two particles does not 
depend on the prescription adopted to build F from the vacuum (i.e. on the ,commutation or 
anticommutation relations of the ai's and ajt's), but that it must be imposed as an external 
constraint aiming to guarantee a correct implementation of the'above isomorphism. 

In such a perspective let us consider what happens with two bosons. Independently of 
whether the algebra is graded or not, for such a system one has to consider a symmetric 
Hilbert space, that is a generic state vector must be symmetric with respect to the exchange 
of the two particles (this being the feature which qualifies them as boson): 

Ixl,xZ)B E ( l x l ) l x Z )  + IxZ)lxl)) 

and by (12), 

1~1,xz)B = C 1 1 i ,  Ij)(li, 1jIxl.xz)B + 12i)(2ib1ixZ)B. 
i<j i 

Independently of how the states Ili, lj) and I&) are constructed from the vacuum, the 
symmetry here is automatically implemented in that 

(li, I~IxI,xzJB = h(li, IjI(Ixl,xz) + IXZ,XI)) = + ( ( ~ ~ I x ~ J ( I ~ I x z )  + (IiIx2)(IjIxt)) 
(2ilXI.XZ)B = Z ( Z i l  (IX1,XZ) + IXZ,XI)) = (lilXl)(lilXZ) 

1 (13) 

are manifestly invariant with respect to the interchange of the two particles. 
The feature that the statistics has no connection with the algebra is further proved by 

the fact that osp(ll2). as well as h( l ) ,  work equally well with fermions. For two fermions 
we must consider an antisymmetric Hilbert state-space 

Ixl,XZ)F +((Ixl)bZ) - Ix2)1xI)) 

Again independently of the algebra considered, the antisymmetry in the exchange of'the 
two fermions is guaranteed, as well as the Pauli exclusion principle: 

I 
(Xi, ljlxIIxz)p = $(li. ljl (IX1,XZ) - IXZ.XI)) =~z ((lilXl)(ljIXZ) - (lilXZ)~ljIXl)) 

I (14) 
(&1xI,XZ)F Ji(2'1 (Ixl.XZ) - IxZ?xI)) 5 ((lilxl)(lilxZ) - (lilxZ)(1ikI)) =o. 

Equations (13) and (14) clearly demonstrate the possibility-besides the customary scheme 
[5]-of constructing bosons with graded operators or fermions with even operators. 

It should be stressed that our arguments in this letter are quite different from other 
procedures whereby ad hoc constraints are intxoduced on the variables in order to generate 
the statistics. An example of such different approaches is nonlinear aansformation along 
the lines proposed by Gutzwiller's projection operator method [7]. In the fermionic case, a 
suggestive example is provided by the new creation and annihilation operators defined by 
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It is straightforward to check that-because of ( Z h n  the subsector of P consisting 
of paired superdoublets [ I . .  . , 2 n j , .  . .), I.. . ,2nj  + 1 , .  . . ) I  equation (15) leads to both the 
Pauli exclusion principle, $ = 0 = (cj')', and the customary fermionic anticommutation 
relations (ci, c j t )  = &jl. The usual fermions can, therefore, be recovered by a restriction to 
nj = 0. Of course, in the above procedure no reference or use ha-  been made of grading. 

Adoption of a graded algebra also has an effect on the structures one can induce in 
the universal enveloping algebra (UeA). For example, it is usually assumed that the algebra 
su(1, 1) can be constructed in the UEA of h(1). However, this is not possible because, as 
stressed before, su(l .1) can easily be obtained from equations (3) as the bosonic sector 
of the supedgebra osp(ll2). while one has to use no = 0 (i.e. one also needs to impose 
indirectly the osp(ll2) properties) to obtain the same result from equations (1). Moreover,, 
the grading property (10) plays an essential role in obtaining the coalgebra (primitive of 
course) of su(1,  I )  from the coalgebra of S, while it is impossible to obtain the same result 
from the coalgebra of h(1). 

Indeed,from(5),(8)and(9)wehave,forinstance,inh(l), A(J- )=aZ@l+l@aZ+ 
2a@a whereasinosp(lIZ), becauseof(ll), A(J-)=a2@1+1@aZ= J - @ l + l @ J - ,  
as it should because J -  is primitive. 

This shows that su(1, l )  is contained as a full Hopf algebra in the universal envelope 
of S, while only in the common representation (2) can the su(1,l)  algebra be considered 
realized in the UEA of h(1) (all these can be extended to su(2) by analytical continuation 
from su(1, I)). 

We now recall that both h(1) [SI and osp(ll2) [9] have quantum deformations and the 
whole discussion can easily be extended to them. It should be kept in mind that, in the 
scheme proposed, there is no relation that links the algebraic features of the creation and 
annihilation operators to the symmetry of the states. It is, indeed, possible to study systems 
of particles, both fermions or bosons, by means of either h, ( l )  or osp,(1(2). The Fock 
space always remains the same, while differences appear in the relations of composed and 
single particle observables. 

We finally conjecture that, in the present approach, there is room for considering objects 
with more complex symmetry such as anyons. 

The authors ptefully acknowledge fruitful discussions with F Iachello. 
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